Nucleus Multipurpose Technology HTML Template
We would like to show you some of the best technology html website templates , which can be sued for creating tech based sites, tech blogs, hosting company sites, gaming sites, app landing websites magazine websites, internet service provider websites and any more.
Nucleus Multipurpose Technology HTML Template
The TechMag is a modern trending responsive blog template for professional bloggers. This template comes with 25+ valid html files custom category pages, single blog, single review, single job, single forum and official job, review, forum pages.
VSDocs is a great html technology website template which is fast, extendable and comes with 40+ elements, 4 header variations, 30+ html files, organized source code, and many other customizable features.
Developing smart hydrogels with integrated and suitable properties to treat intervertebral disc degeneration (IVDD) by minimally invasive injection is of high desire in clinical application and still an ongoing challenge. In this work, an extraordinary injectable hydrogel PBNPs@OBG (Prussian blue nanoparticles@oxidized hyaluronic acid/borax/gelatin) with promising antibacterial, antioxidation, rapid gelation, and self-healing characteristics was designed via dual-dynamic-bond cross-linking among the oxidized hyaluronic acid (OHA), borax, and gelatin. The mechanical performance of the hydrogel was studied by dynamic mechanical analysis. Meanwhile, the swelling ratio and degradation level of the hydrogel was explored. Benefiting from its remarkable mechanical properties, sufficient tissue adhesiveness, and ideal shape-adaptability, the injectable PBNPs containing hydrogel was explored for IVDD therapy. Astoundingly, the as-fabricated hydrogel was able to alleviate H2O2-induced excessive ROS against oxidative stress trauma of nucleus pulposus, which was further revealed by theoretical calculations. Rat IVDD model was next established to estimate therapeutic effect of this PBNPs@OBG hydrogel for IVDD treatment in vivo. On the whole, combination of the smart multifunctional hydrogel and nanotechnology-mediated antioxidant therapy can serve as a fire-new general type of therapeutic strategy for IVDD and other oxidative stress-related diseases.
The integration of gene delivery technologies with electrospun nanofibers is a versatile strategy to increase the potential of gene therapy as a key platform technology that can be readily utilized for numerous biomedical applications, including cancer therapy, stem cell therapy, and tissue engineering. As a spatial template for gene delivery, electrospun nanofibers possess highly advantageous characteristics, such as their ease of production, their ECM-analogue nature, the broad range of choices for materials, the feasibility of producing structures with varied physical and chemical properties, and their large surface-to-volume ratios. Thus, electrospun fiber-mediated gene delivery exhibits a great capacity to modulate the spatial and temporal release kinetics of gene vectors and enhance gene delivery efficiency. This review discusses the powerful characteristics of electrospun nanofibers, which can function as spatial interfaces capable of promoting controlled and efficient gene delivery.